INTERFACIAL PHENOMENA
EQUILIBRIUM AND DYNAMIC EFFECTS
SECOND EDITION
1. Nonionic Surfactants, *edited by Martin J. Schick* (see also Volumes 19, 23, and 60)

2. Solvent Properties of Surfactant Solutions, *edited by Kozo Shinoda* (see Volume 55)

4. Cationic Surfactants, *edited by Eric Jungermann* (see also Volumes 34, 37, and 53)

5. Detergency: Theory and Test Methods (in three parts), *edited by W. G. Cutler and R. C. Davis* (see also Volume 20)

6. Emulsions and Emulsion Technology (in three parts), *edited by Kenneth J. Lissant*

7. Anionic Surfactants (in two parts), *edited by Warner M. Linfield* (see Volume 56)

8. Anionic Surfactants: Chemical Analysis, *edited by John Cross*

9. Stabilization of Colloidal Dispersions by Polymer Adsorption, *Tatsuo Sato and Richard Ruch*

10. Anionic Surfactants: Biochemistry, Toxicology, Dermatology, *edited by Christian Gloxhuber* (see Volume 43)

15. Electrical Phenomena at Interfaces: Fundamentals, Measurements, and Applications, *edited by Ayao Kitahara and Akira Watanabe*

16. Surfactants in Cosmetics, edited by Martin M. Rieger (see Volume 68)

17. Interfacial Phenomena: Equilibrium and Dynamic Effects, *Clarence A. Miller and P. Neogi*

20. Detergency: Theory and Technology, *edited by W. Gale Cutler and Erik Kissa*

22. Surfactant Solutions: New Methods of Investigation, *edited by Raoul Zana*

24. Microemulsion Systems, *edited by Henri L. Rosano and Marc Clausse*
27. Reagents in Mineral Technology, edited by P. Somasundaran and Brij M. Moudgil
29. Thin Liquid Films, edited by I. B. Ivanov
32. Interfacial Phenomena in Coal Technology, edited by Gregory D. Botsaris and Yuli M. Glazman
33. Surfactant-Based Separation Processes, edited by John F. Scamehorn and Jeffrey H. Harwell
34. Cationic Surfactants: Organic Chemistry, edited by James M. Richmond
35. Alkylene Oxides and Their Polymers, F. E. Bailey, Jr., and Joseph V. Koleske
37. Cationic Surfactants: Physical Chemistry, edited by Donn N. Rubingh and Paul M. Holland
38. Kinetics and Catalysis in Microheterogeneous Systems, edited by M. Grätzel and K. Kalyanasundaram
39. Interfacial Phenomena in Biological Systems, edited by Max Bender
40. Analysis of Surfactants, Thomas M. Schmitt (see Volume 96)
41. Light Scattering by Liquid Surfaces and Complementary Techniques, edited by Dominique Langevin
42. Polymeric Surfactants, Irja Piirma
44. Organized Solutions: Surfactants in Science and Technology, edited by Stig E. Friberg and Björn Lindman
46. Mixed Surfactant Systems, edited by Keizo Ogino and Masahiko Abe
47. Coagulation and Flocculation: Theory and Applications, edited by Bohuslav Dobiáš
49. Wettability, edited by John C. Berg
50. Fluorinated Surfactants: Synthesis Properties Applications, Erik Kissä
51. Surface and Colloid Chemistry in Advanced Ceramics Processing, edited by Robert J. Pugh and Lennart Bergström
52. Technological Applications of Dispersions, edited by Robert B. McKay
54. Surfactants in Agrochemicals, Tharwat F. Tadros
55. Solubilization in Surfactant Aggregates, edited by Sherril D. Christian and John F. Scamehorn
58. The Preparation of Dispersions in Liquids, H. N. Stein
60. Nonionic Surfactants: Polyoxyalkylene Block Copolymers, edited by Vaughn M. Nace
61. Emulsions and Emulsion Stability, edited by Johan Sjöblom
62. Vesicles, edited by Morton Rosoff
63. Applied Surface Thermodynamics, edited by A. W. Neumann and Jan K. Spelt
64. Surfactants in Solution, edited by Arun K. Chattopadhyay and K. L. Mittal
65. Detergents in the Environment, edited by Milan Johann Schwuger
66. Industrial Applications of Microemulsions, edited by Conxita Solans and Hironobu Kunieda
67. Liquid Detergents, edited by Kuo-Yann Lai
69. Enzymes in Detergency, edited by Jan H. van Ee, Onno Misset, and Erik J. Baas
70. Structure-Performance Relationships in Surfactants, edited by Kunio Esumi and Minoru Ueno
71. Powdered Detergents, edited by Michael S. Showell
74. Novel Surfactants: Preparation, Applications, and Biodegradability, edited by Krister Holmberg
75. Biopolymers at Interfaces, edited by Martin Malmsten
77. Polymer-Surfactant Systems, edited by Jan C. T. Kwak
78. Surfaces of Nanoparticles and Porous Materials, edited by James A. Schwarz and Cristian I. Contescu
79. Surface Chemistry and Electrochemistry of Membranes, edited by Torben Smith Sørensen
80. Interfacial Phenomena in Chromatography, edited by Emile Pefferkorn
81. Solid–Liquid Dispersions, Bohuslav Dobiás, Xueping Qiu, and Wolfgang von Rybinski
83. Modern Characterization Methods of Surfactant Systems, edited by Bernard P. Binks
84. Dispersions: Characterization, Testing, and Measurement, Erik Kiss
85. Interfacial Forces and Fields: Theory and Applications, edited by Jyh-Ping Hsu
86. Silicone Surfactants, edited by Randal M. Hill
88. Interfacial Dynamics, edited by Nikola Kallay
89. Computational Methods in Surface and Colloid Science, edited by Małgorzata Borówko
90. Adsorption on Silica Surfaces, edited by Eugène Papirer
91. Nonionic Surfactants: Alkyl Polyglucosides, edited by Dieter Balzer and Harald Lüders
93. Thermal Behavior of Dispersed Systems, edited by Nissim Garti
94. Surface Characteristics of Fibers and Textiles, edited by Christopher M. Pastore and Paul Kiekens
95. Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications, edited by Alexander G. Volkov
98. Detergency of Specialty Surfactants, edited by Floyd E. Friedli
99. Physical Chemistry of Polyelectrolytes, edited by Tsetska Radeva
100. Reactions and Synthesis in Surfactant Systems, edited by John Texter
102. Chemical Properties of Material Surfaces, Marek Kosmulski
103. Oxide Surfaces, edited by James A. Wingrave
106. Interfacial Electrokinetics and Electrophoresis, edited by Ángel V. Delgado
107. Adsorption: Theory, Modeling, and Analysis, edited by József Tóth
108. Interfacial Applications in Environmental Engineering, edited by Mark A. Keane
113. Liquid Interfacial Systems: Oscillations and Instability, Rudolph V. Birikh, Vladimir A. Briskman, Manuel G. Velarde, and Jean-Claude Legros
116. Colloidal Biomolecules, Biomaterials, and Biomedical Applications, edited by Abdelhamid Elaissari
118. Colloidal Science of Flotation, Anh V. Nguyen and Hans Joachim Schulze
120. Microporous Media: Synthesis, Properties, and Modeling,
Freddy Romm
121. Handbook of Detergents, editor in chief: Uri Zoller Part B:
Environmental Impact, edited by Uri Zoller
122. Luminous Chemical Vapor Deposition and Interface Engineering,
Hirotugu Yasuda
123. Handbook of Detergents, editor in chief: Uri Zoller Part C:
Analysis, edited by Heinrich Waldhoff and Rudiger Spilker
and Expanded, edited by Masahiko Abe and John F. Scamehorn
125. Dynamics of Surfactant Self-Assemblies: Micelles,
Microemulsions, Vesicles and Lyotropic Phases, edited by
Raoul Zana
Hansjoachim Stechemesser and Bohulav Dobiás
127. Bicontinuous Liquid Crystals, edited by Matthew L. Lynch
and Patrick T. Spicer
128. Handbook of Detergents, editor in chief: Uri Zoller Part D:
Formulation, edited by Michael S. Showell
130. Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering,
edited by Aleksandar M. Spasic and Jyh-Ping Hsu
Horacio E. Bergna and William O. Roberts
Johan Sjöblom
133. Micellar Catalysis, Mohammad Niyaz Khan
134. Molecular and Colloidal Electro-Optics, Stoyl P. Stoylov
and Maria V. Stoimenova
135. Surfactants in Personal Care Products and Decorative
Cosmetics, Third Edition, edited by Linda D. Rhein,
Mitchell Schlossman, Anthony O’Lenick, and P. Somasundaran
136. Rheology of Particulate Dispersions and Composites,
Rajinder Pal
137. Powders and Fibers: Interfacial Science and Applications,
edited by Michel Nardin and Eugène Papirer
138. Wetting and Spreading Dynamics, edited by Victor Starov,
Manuel G. Velarde, and Clayton Radke
139. Interfacial Phenomena: Equilibrium and Dynamic Effects,
Contents

Preface to Second Edition

Authors

Chapter 1 Fundamentals of Interfacial Tension...1
1. Introduction to Interfacial Phenomena...1
2. Interfacial Tension: Qualitative Considerations3
3. Interfacial Tension: Thermodynamic Approach ...6
 Example 1.1 Vapor Pressure of a Drop ..13
 Solution..13
4. Interfacial Tension: Mechanical Approach ..14
 Example 1.2 Locating the Dividing Surface ...17
 Solution..18
5. Density and Concentration Profiles...19
6. Equilibrium Shapes of Fluid Interfaces..22
 Example 1.3 Dimensions of a Sessile Drop...25
 Solution..25
 Example 1.4 Shape of a Soap Film between Parallel Rings.....................27
 Solution..28
7. Methods of Measuring Interfacial Tension ..29
 Example 1.5 Capillary Rise in Air-Water and Oil-Water Systems36
 Solution..36
8. Surface Tension of Binary Mixtures...36
 Example 1.6 Surface Tension of Ideal Binary Solutions39
 Solution..40
 Example 1.7 Surface Tension of Regular Solutions
 (Defay et al., 1966) ..40
 Solution..40
9. Surfactants...40
10. Solid-Fluid Interfaces..42
References..46
 General Texts on Interfacial Phenomena..46
 Text References ..46
Problems...48

Chapter 2 Fundamentals of Wetting, Contact Angle, and Adsorption........61
5. Formation of Complexes between Surfactants and Polymers 191
6. Surface Films of Insoluble Substrates... 197
7. Solubilization and Microemulsions.. 202
8. Phase Behavior and Interfacial Tension for Oil-Water-Surfactant
 Systems.. 206
9. Effect of Composition Changes.. 210
 Example 4.4 Effect of Composition and Temperature on Optimal
 Salinity.. 213
 Solution... 213
10. Thermodynamics of Microemulsions.. 214
11. Applications of Surfactants: Emulsions.. 218
12. Applications of Surfactants: Detergency... 223
13. Chemical Reactions in Micellar Solutions and Microemulsions.......... 227
References.. 230
 General References on Surfactants and Their Behavior 230
 Text References.. 230
Problems.. 240

Chapter 5 Interfaces in Motion: Stability and Wave Motion 247
1. Background.. 247
2. Linear Analysis of Interfacial Stability.. 248
 2.1 Differential Equations... 248
 2.2 Boundary Conditions... 253
 2.3 Stability Condition and Wave Motion for Superposed Fluids 257
 Example 5.1 Characteristics of Wave Motion for
 Free Interfaces.. 262
 Solution.. 262
3. Damping of Capillary Wave Motion by Insoluble Surfactants.......... 262
 Example 5.2 Characteristics of Wave Motion for Inextensible
 Interfaces... 268
 Solution.. 268
4. Instability of Fluid Cylinders or Jets.. 268
5. Oscillating Jet.. 272
 Example 5.3 Surface Tension of Oscillating Jets............................... 274
 Solution.. 274
6. Stability and Wave Motion of Thin Liquid Films: Foams and
 Wettability... 274
 Example 5.4 Stability of a Liquid Film.. 285
 Solution.. 285
 of Interfaces.. 286
 Example 5.5 Energy Method for Stability of Superposed Fluids........ 288
 Solution.. 288
8. Interfacial Stability for Fluids in Motion: Kelvin-Helmholtz
 Instability .. 289
 Example 5.6 Kelvin-Helmholtz Instability for Air-Water System 292
 Solution ... 292
 Example 5.7 Peak Heat Flux 292
 Solution ... 294
9. Waves on a Falling Liquid Film ... 294
 Example 5.8 Wave Motion on Falling Water Film 298
 Solution ... 298
References .. 298
 General References on Interfacial Stability and
 Wave Motion .. 298
 Text References .. 299
Problems .. 301

Chapter 6 Transport Effects on Interfacial Phenomena 307
1. Interfacial Tension Variation ... 307
2. Interfacial Species Mass Balance and Energy Balance 307
3. Interfacial Instability for a Liquid Heated from Below or Cooled
 from Above .. 310
 Example 6.1 Conditions for Development of Marangoni Instability... 319
 Solution ... 319
4. Interfacial Instability during Mass Transfer 320
5. Other Phenomena Influenced by Marangoni Flow 326
6. Nonequilibrium Interfacial Tensions ... 328
7. Effect of Surfactant Transport on Wave Motion 335
8. Stability of Moving Interfaces with Phase Transformation 339
 Example 6.2 Characteristics of Interfacial Instability during
 Solidification .. 344
 Solution ... 345
9. Stability of Moving Interfaces with Chemical Reaction 345
10. Intermediate Phase Formation ... 349
11. Transport-Related Spontaneous Emulsification 355
12. Interfacial Mass Transfer Resistance .. 360
13. Other Interfacial Phenomena Involving Dispersed Phase Formation 366
References .. 369
 General References on Phenomena Involving Transport near
 Interfaces ... 369
 Text References .. 370
Problems .. 377

Chapter 7 Dynamic Interfaces ... 385
1. Introduction ... 385
PREFACE TO
SECOND EDITION

Since the first edition was published in 1985, fundamental understanding of
interfacial phenomena has advanced significantly although more extensively in
some areas than in others. Interest in interfaces and surfactant behavior has
increased, and applications have multiplied. While we discuss some new appli-
cations in this expanded second edition, we have retained the chief objective of
the first edition: a concise summary of the fundamentals with emphasis on
equilibrium phenomena followed by chapters on flow, transport and stability of
interfaces understandable to graduate students and others entering the field but
also useful to researchers whose major focus is not on dynamic interfacial phe-
nomena. Some background in thermodynamics and transport phenomena is
assumed. Although all chapters of the first edition have been modi
fied, Chapters
IV on surfactants and VI on transport effects have undergone the greatest expan-
sion and increase in scope. Moreover, an entirely new Chapter VIII has been
added on mass transfer measurements and key experimental techniques for deter-
mination of microstructure in colloidal dispersions and surfactant systems. In all
chapters references have been updated and new problems added.

Major changes in individual chapters are as follows:
• Chapter I on interfacial tension. New section on solid-fluid interfaces.
• Chapter II on contact angles. New sections on acid-base interactions
 and characterization of solid surfaces.
• Chapter III on colloidal dispersions. Electrostatics follows S.I. units.
 New section on characterization of colloidal dispersions. Section on
 effects of adsorbed polymer completely rewritten with new material.
• Chapter IV on surfactants. New sections on surfactant/polymer inter-
 actions and on chemical reactions in micellar solutions and microemul-
 sions plus expansion and inclusion of new material in almost all other
 sections.
• Chapter V on interfacial stability. Section on thin liquid films and foam
 completely rewritten to incorporate recent developments.
• Chapter VI on transport effects on interfacial stability. New material
 on solubilization rates and formation of intermediate phases during
diffusion in surfactant systems; sections on spontaneous emulsification
 and dynamic surface tension revised and expanded.
• Chapter VII on interfacial dynamics. Sections on drainage of thin liquid films and on dynamic contact lines updated and expanded and new section on very thin films added.
• Chapter VIII on mass transfer and techniques for determining microstructure. New chapter on experimental techniques as indicated above including static and dynamic light scattering and NMR self-diffusion. Further discussion of mass transfer effects.

Clarence A. Miller
Partho Neogi
May, 2006
Authors

Clarence A. Miller is Louis Calder Professor of Chemical and Biomolecular Engineering at Rice University in Houston, Texas and a former chairman of the department. Before coming to Rice he served on the faculty at Carnegie-Mellon University from 1969-1981. He received B.A. and B.S. degrees from Rice University (1961) and the Ph.D. degree from the University of Minnesota (1969), all in chemical engineering. He has been a Visiting Scholar at Cambridge University, England (1979-80), University of Bayreuth, Germany (1989, 1995) and Delft University, the Netherlands (1995).

Dr. Miller’s research interests center on equilibrium and dynamic phenomena in oil/water/surfactant systems, specifically interfacial stability and behavior of emulsions, microemulsions and foams and their application in areas such as detergency, enhanced oil recovery and environmental remediation. He is a Fellow of the American Institute of Chemical Engineers and a member of the American Chemical Society, American Oil Chemists Society, International Association of Colloid and Interface Scientists, and the Society of Petroleum Engineers. He has published numerous research papers and review articles on interfacial phenomena, served on the editorial boards of leading journals in the field, and given invited lectures at conferences, universities and industrial laboratories in many countries.

Partho Neogi is a Professor of Chemical and Biological Engineering at the University of Missouri-Rolla. He received his B. Tech. (Hons.) at the Indian Institute of Technology Kharagpur (1973), M. Tech. at the Indian Institute of Technology Kanpur (1975) and his Ph. D. at Carnegie-Mellon University (1979), all in Chemical Engineering. He joined the University of Missouri-Rolla in 1980, and has been there since.

Dr. Neogi’s research area lies in studies of transport at interfaces. They include dynamics of wetting, surfactant systems and electrochemical systems. He has also contributed in thermodynamics and transport in surfactant systems and polymer membranes. He is member of the American Institute of Chemical Engineers and the American Chemical Society.